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SUBMODULAR SET FUNCTIONS, MATROIDS AND THE GREEDY ALGORITHM: TIGHT

WORST-CASE BOUNDS AND SOME GENERALIZATIONS OF THE RADO-EDMONDS THEOREM

by

Michele Conforti* and Gérard Cornuéjols* !

ABSTRACT

For the problem max (Z(S) : § is an independent set in the matroid X] it is
welleknown that the greedy algorithm finds an optimal solution when Z is an additive
set function (Rado-Edmonds theorem). Fisher, Nemhauser and Wolsey have shown that,
when Z is a nondecreasing submodular set function satisfying Z () =0, the greedy
algorithm finds a solution with value at least half the optimum value. In this paper
we show that is finds a solution with value at least 1/(1 + &) times the optimum
value, where @ is a parameter which represents the "total curvature'" of Z. This
parameter satisfies 0 <> <1 and o = 0 if and only if the set function Z is additive.
Thus the theorems of Rado-Edmonds and Fisher-Nemhauser-Wolsey are both coatained in
the bound 1/(1 + 5). We show that this bound is best possible in terms of o,

Another bound which generalizes the Rado-Edmonds theorem is given in terms of a
"greedy curvature" of the set function. Unlike the first bound, this bound can
prove the optimality of the greedy algorithm even in instances where Z is not addi-
tive. A third bound, in terms of the rank and the girth of X, unifies and general-
izes the bounds (e-1)/e known for uniform matroids and 1/2 for general matroids. We
also analyze the performance of the greedy algorithm when X is an independence sys-
tem instead of a matroid., Then we derive two bounds, both tight:

The first onsis (1 - (1 - 7/K)klﬁy where K and k are the sizes of the largest and
smallest maximal independent sets in X respectively; the second one is 1/(p + ~)
where p is the minimum number of matroids that must be intersected to obtain X.

Key Words: Combinatorial Optimization, Greedy Algorithm, Matroid, Submodular Set
Function, Worst-Case Analysis, Heuristic, Tight Bound.

*CORE, University of Louvain. On leave of absence from GSIA, Carnegie-
University, This work was supported in part by NSF grant ECS-82(0




1. INTRODUCTION

Many problems in combinatorial optimization can be written in a natural

way as

a.n max {z(S) : S € X}

where X is a family of subsets of a finite set N and Z is a set func-

tion defined on {S C N}.

The family X 1is called an independence system if
(1.2) SE€EX and TC S=TE X.
The sets in X are often called <ndependent cets. If furthermore
(1.3) S, T€E X and |T]+1 =]|S] =»3j € S-T such that Tu {j} € X,

then the family X is called a mairoid. See [12], [10].

For a set function Z, we define the discreie derivative at S C N
in direction j € N as P; (8) = z(s u {j}) - z(S). The set function Z is
said to be suilmodular if

(1.4) TES_C_N*pj(T)>pj(S) for all j EN-S.

A greedy (or steepest ascent) algorithm comes naturally to mind when

X is a matroid (or an independence system) and when Z is submodular.

CREEDY ALGORITHM : Start with the empty set. Then recursively add to the

current solution set S an element j with the largest discrete derivative
pj(S) among all j € N-S such that S U {j} € X and pj(S) > 0. Stop

when no such element exists.




Kell-known exarples of problems fitting the framework (1.1) include

(1.5) the problem of finding a maximum weight independent set in a
ratroid : X is a matroid and Z is additive (i.e., oj(s) = pj,
a constant independent of S). Then the greedy algorithm finds
an optimal solution (Rado-Edmonds theorecm) (3]; a common applica-

tion occurs when the independent sets are the forests of a graph

(91, [101.

(1.6) a simple plant location problem [2] : X is a wunifurm rmatroid
(i.e. X={ScN: |s| <K}) and Z is a nondecreasing sub-
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rodular set function with Z(@) = 0. Then the greedy algorithm
finds a solution with a value which is guarantced to be at lcast
(e-1)/e times the optimum value {2], [11], where e is the base

of the natural logarithms;

(1.7) the problem of finding a set of maximum weight in the intersection
of two matroids : X is one of the two matroids and, for all
SCN, 2(S) is the maximum weight over all sets T C S which are
independent in the second matroid. Then the greedy algoritlm

guarantees a solution within 50 7 of the optimum [5].

These are three examples where the feasible set is a matroid. Although =
the bound guaranteed by the grcedy algorithm is different in each case we
believe that these results can be unified. For example, we will show that the
bounds (1.6) and (1.7) are the two extreme values of a bound expressed in terms
of the cardinalities of the smallest infeasible and largest feasible sets,
These parameters are called the girth and the rank of the matroid X respectively,
We will also show that the bounds (1.5) aand (1.7) are the two extreme values of

a bound expressed in terms of a parameter reflecting the 'total curvature'" of
the function Z (see definition below).
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It will be convenient to assume that, in (1.1), the objective function
is nondecrcasing and satisfies Z(¢) = 0. (As in (11], general subrodular
set functions can be handled by using an appropriate perforrance measure;
however, with the above assumption, the greedy performance will simply be
given as a percentage of the optimum value.) Nondecreasing submodular set
functions such that Z(®) =0 are subadditive (i.e. Z(58) + Z(T) 2 2(SU T)
VS, TCN). They arise in location theory and more generally in economic
problems vwhere the marginal profit pj(S) of performing a new action j
once a set S of actions is already undertaken is nonincreasing with respect
to S. They have also been used to measure consumer satisfaction [8].

In the maximum weight forest problem [see (1.5)] it is sometimes more real-
istic to assume that the objective function is submodular rather than just
additive. Three other examples from the mathematical programring literature
can be found in [11]. An example which may be little known occurs in network
flow theory. Given a network with edge capacities, a source s and a set N
of sinks, let 2(S) be the maximum flow from s to a subset S of sinks.
Obviously the set function Z 1is nondecreasing and Z(p) = 0. Fulkerson
liked to ask whether Z is submodular in his course on network flows. It is

left here as an exercise.

The total curvaiure of a nondecreasing submodular set function is

O ihH }
oj(qs)

jen®
where N* = {3 enN_: pj(¢) > 0)}. Xote that a can vary between 0 and 1 and
that a =0 if and only if Z is additive. 1In Section 2 we prove that the
greedy algorithm finds a solution with a value which is guaranteed to be
at least 1/(1+a) times the optimum value for problem (1.1) when X is a
ratroid and Z is a nondecreasing submodular set function with Z(g) =0
and total curvature &a. This bound generalizes the Rado-Edmonds tlicorem,
see (1.5), as well as the bound (1.7), obtained wvhen a =0 and a =1

respectively. We show also that the bound 1/(1 +a) -is best pecssible in

terns of a.
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Let 5" =gCcS C...cC SK be the sets which are succesively con-

structed in the course of the greedy algorithm (SK is the greedy soluticn).

We define the greedy curvature of Z as

i

Q. = max max {
0<ic<K-1 jeNl

where N' =N* N {ie€ x-si:siu {3} € x}. xote that a, <a, the total
curvature of Z. Note also that QG can equal 0 even when Z 1is not addi-
tive. In Section 3 we prove that the greedy algorithm finds a solution
with a value which is guaranteed to be at least (] *aG) times the optimum
value of problem (1.1), again with the assumptions that X is a matroid
and that Z is nondecreasing, submodular and Z(¢) = 0. Note that when
a0 = 0 we can guarantee the optimality of the greedy algorithm even thcugh

the objective function may not be additive.

In Section 4 we give a bound which depends only on the matroid X. Let
K be the rank of X, ie. the common cardinality of the maximal independent sets
and let (h + 1) be its girth, ie. the cardinality of a smallest depemndent set.
We prove the following tight bound. The value of a greedy solution is at least
half the optimum value if K > 2h and at least [1 - b (IS:l)Zh.K

K " K
timum value if K <2h, Our bounding method is based on the weak duality theorem

] times the op-

of linear programming in the same spirit as [1,11]. More precisely we decom-
pose the greedy solution ZG =p,* 09 oot ex where oy > 0. Then we find in-
equalities relating the optimum value Z* to this decomposition Ag > Z* where p
is the column vector of pi's and A is a matrix. Now find n > O such that

2w Ap2

K
= A < e where e is a row vector with K ones. We have ZG =Y p
i=1

(% "1) Z* providing a bound on the greedy solution. To show that the bound
{zltight we give a family of examples which achieve it. The originality of

i

our system A o > Z* is that it incorporates simultaneously information on the
objective function Z and on the matroidal structure of the feasible set.




Examples of independence systems are quite common in 0,1 prograrming.
In fact, given a nonnegative matrix A, the family of 0,1 vectors that
satisfy Ax < b 1is an independence system (here we identify a set S and
its incidence vector x, =1 if j € S, 0 otherwise). Conversely any

independence system is the solution set of such a 0,1 program.

Two bounds were proven in [5] regarding the greedy algorithm for prob-
lem (1.1) wvhen X is an independence system and Z is a nendecreasing sub-
modular set function with Z(¢) =0. First it was shown that the greedy

. - 1\k
algorithm guarantees a solution value at least [l - (E-R—l-) ] times the

optimum value, where K and k are respectively the maximum and mininum cardinali-
ties of a maximal independent set in X. The second bound is ‘p-Tl where p is the
minimum number of matroids that one needs to intersect in order to obtain the
independence system X. (The fact that any independence system can be expressed
as the intersection of matroids is proved in [7].) When the set function Z is

additive these two bounds can be sharpened to ilz- and % respectively (6], [7].

In Section5 we show that, in terms of K, k and the total curvature

of Z, the preedy algorithm guarantees a solution value at least equal to
1 K-a\k . . . . .
3 1 ( K ) ] times the optimum value. This bound is tight for all
0 <a<1]. Note that vhen we set a =1 and a - 0 we get the bounds

[l (—i—l) ] and —;E respectively. Note also that, when k =K, we get
a result for the uniform matroid, narely the bound (1 - e %/a; further-

more this bound is best possible in terms of a. In particular it is easy

to see that it dominates the bound 1/(1 +a) for any 0 <a <1 since

(1-e¥H/a>1- g‘- >1/(1+0q).

PR N A £

In Section 6 we give a bound in terms of p and «, namely the bound

-ﬁ—:T’ %and -1—1—&- rentioned

earlier in this introduction for different variations of problem (1.1).

1/(p+a). This generalizes the bounds

T T T

In fact the result is proved in the more general context max {2Z(v) :v € X}
where Z is a nondecreasing submodular vector function and X is the

intersection of p polyratroids.




2. THE BOUND 1/(1 +a)

Let N be a finite set and 2 : ZL R a nondecreasing submodular
set function with 2(¢) = 0. Given a set Q C N and an ordered set

S ={j,..-si) € N, ve define S* ={j ,...,j;} for 1<i<r, and

p. (s - py (5
a = max 35 i
) i:3.es* FPe)
"1 p. (8171
3

"'l
oo

where S* = {j. € 8-a: pj (Sl_l) > 0}. Note that a°=< a, the total
i .
i .
i-1 .
curvature of Z. Denote py =P (8" ), 1i=1,...,t.

I

L4 2,1, 2(Q) <a z p, + z s+ Z o (S).
i:jies—Q 1 i:jieQnS wef-S

Proof : A simple consequence of the definition (1.4) is

(2.1) zZ(Qus) <z(s) + X p (9).
wel,—8

By the definition of a,

zQusy =2(@ + T p. (Qusihy sz + @ ~a) T o
i:j,c5-0 I 1,80

In this section and the next two we assume that X is a matroid. Qe
also assume that SK =I{j],...,jK} is th; sequence chosen by the greedy
algorithm. Note that SK is a lase (i.e. a maximal set in X). A conse-
quence of axiom (1.3) is that all the bases of X have.the same cardinality.
Recall the notation Si = {jx""’ji} and p; =0 (Sl-l), i=1,...,K.

I3
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LEIMA 2.2. The elenemts of any tase QK = {ml,...,wx} can be crdered so

L) .'-l . v . X
tnat ;:vwi(s1 ) < Pgs 1 = l,...,K.  Furthermcre, if w, € ok r\sl\, tren

W, = J..
i34

Proof : The lemma is proved by induction on i, for i =K,...,1. Assume

that the elements wy satisfy the inequality pmz(sk—l) <§p2 for >,
and let Q' = QK - {NZ : £ >1i}. Consider the sets Sl‘l and Q*. By the

matroid axiom (1.3), Fw; € Q' - Sl-l such that Slu1 U {mi} € X. Since

ji is the element chosen by the greedy algorithm, pw’(51-1)=< pj_(Sl-l).
. i i

Furthermore if j. € Q' we can set w, = ..

i i i a

Let z° be the value of a greedy solution and 2z* the optimal value

of problem (1.1).

TEEQREM 2.3. If X is a matroid and Z is a nondecreasing sulrmodular set

Fanction with 2(@) =0 and tctal curvaiure a, tiem

26> Lg%,
1 +a

Proof : Let QK' be an optimal solution and SK the greedy solution. By

Lemma 2.1

G K
2¥<a 27 + z p. + z o, (sM).
] .
i:_']ieQKnSK N i:miGQK—SK w3

By Lerma 2.2, p_ %y < Py (S"-]) <p;. Therefore,
i i

2* <o, 2%+ 2° < (1 +)2€

CCROLLARY 2.4. The proof actuaclly shovs the sircnger bound 2€ > —]—;la— z*.
°

wrem o =0, the ¢reedy algoritim finds an ortimal solution,.

T A e R AR AW gy e - B i %




CCROLLARY 2.8, Whem 2 1s additive (e uivalently vhken a = 0), the greedy

-2

algeritim finds an optimal soluiion (Aulc-Fdnonds Trecrem).

CorcILARY 2.6. 20 > 2*/2. (Sce [5).)

CCROLLARY 2.7, Any two meximal scts in the Iriersection ¢f tue mairoids

lave cardinalities which are within a fuctor of 2 of each ciler.

EFIMIRK 8.8. 1t is worth stressing the combinatorial spirit of the deriva-

tion of the bound 1/(1 +a). This derivation is based on two observations,

namely Lemna 2.2. and the inequality (2.1). It is close to the classical
is used implicitly.

REN4RK 2.9, The proof of Theorem 2.3 can be modified to yield a stronger

bound : instead of o® 2nd SK, consider o and S}V‘. Then, by Lerma 2.1

* G -
2" <280 + z b, + z o ("7,

13, eqKnsK-l 71 gy erKogR-T Ty
1 1

K~1 i-
By Lemma 2.2, pw.(S ) < P (st l) < Ps for all 1. Therefore
i i

' < +cx0)ZG ~a P This preves the bound

X

G | N %
2. —_ 2
(2.2) YA Tia 27 + 1*0-0 Py
S Wt ) 2w o 1 o~ * 3 -’ 3 i G l %
Comilaay 2,100 I5 2 #0 wid o) #0 or 1, then 27 > e L (a
0

P PP
striet Uy PArToaN Lty) .

Proof : Assume that the inequality is not strict; then ek = 0 as a con-

sequence of (2.2). Then in every base there exists an elerent w, such that
‘ K-1 .
IE_ e (S ") =0. Therefore pml\(¢) =0, since a, < 1. The greedy and optimal

'S

il S o




solution values are not chenzed if we intersect the natroid X by the

uniforme rmatroid X"‘.1 ={T : }TE < K-1}. The bound (2.2) tecores

5 a
1 * 0 . s -
w::;; 7+ TT:EZ Ck=1" Again by our assumption we rust have Py = 0

and, by induction, Py = 0 vi =1,...,K. This would imply 2* =0, a

contradiction.

e At a v * - . ,G 1 * -
CIECILAPY 20110 If 27 #F0 aud o #0 or 1, 2l L7 > T35 2 {a cirict

Next we show that the bound 1/(]l +a) 1is best pessible in terms of a.
In turn this implies that the bound 1/(1 +0,) 1is best pessible in terms

of a,-

.

TEIUREM 2,12, There extists an infintite family of preblune cuch iiat

G 1 *
ZK * T ZK as K =+ o
. G " * . faT ey AR P R R e ST I p
Lnede ZK C«'"ld ZK #0 are r=0reliiUElY Ve GrECIE QN LT LIl V2 Les O
4;1
s 1S . 1
tre K orellam, )

Proof : When a =0 the tound is always tight, so there is notling to

prove. When a =1, the result is already known [5]. So acsume 0 <a <.

. . t . .
Let N—{Jl,...,JK, wl,...,wK} and N ={]l,...,_]t, ml,...,wt}
for t =1,...,K. We define X as the family of all the subsets S c N

such that

(2.3) IsAN" <t for t=1,... K




It is clear that X is an indepeudence svstem, i.e. axiom (1.2) is verified.

So to prove that X 1is a matroid it rerains to show that axiem (1.3) holds.

let S, T€ X be such that |T! + 1 = 1{s|l. Then S-T=9. let e; €5-T
be an elerent with largest index i, 1 < 1i <K, vhere e denotes either ji
or w,. We will show that T U {ei} € X, namely that l(TLJ{ei})ﬁ Nti <t
for t =1,...,K. By the choice of ey, s n Ntl >=!(TKJ{ei}) N Nt} for

t > i. This irmplies |(TU {e.l}) NN <t for t > 1, using the fact that

S 1is indspendent and (2.3), VWhen t <1, (TL){ei}) N Nt =TnN Nt, so the
incquality (T u {ei}) N Ntisi t for t<i follows from the fact that

T is independent. This shows T U {ei} € X as announced.

Define the set functien 2, for any S C N, as

2(sy =% {oi : ji € s} +Z {oi :w; €5 such that i=1 or j, €S} +

i-1
— == {o. : ., €S such that i »2 znd j, ¢ S}, where
I -a 1 1 i-1
(1-2)1"1q ; fon ;
<, s Rl for 1 =1,...,K. This function is stvtrodular, non-
decreasing with total curvature a since
LN if i>2 and j, , €S
l-a "1 i-1
o (8) =
1 . .
Py if i =1 or I €S,
0, if ow,, €S
o, (S) =
i - - = (1-a)p, if w, €S
{7 T a f3 sl -7

i+1

now we compute the value of a greedy solution. The larjest discrete

. a _
derivative at ¢ 1is Oj‘(¢) = Oml(ﬁ) = Ow2(¢) = 133" So the greedy
. . t : .
algorithm can choose j, in the first iteration. Assurme S™ = {Jl""’Jt}
has been chesen. P, (St) =p st u {wi} € X for i €t and

?
Jt+l t+l

t . . N

. can be clicsen next. The grecdy

ow.(s ) \(:0t+1 for i >2t+ 1. So fenn an be clicse £ \
i




.,jK} has the value

K
R C . « . _ 1 - _ 4K
(2.4) 2g = T ooio= prgx (1 U-2)7]L
i=1
The optizal set is {w, mz,...,wl\,} and has value )
. ) K~1
2 * = - o -
(2.5) ZK 1 i3 (1-a) .

This completes the proof.

3. T4t BOL’«"{? (1- ac)

¢ ) K - .
let S =CCS C...CS be the sets which are successively
constructed in the course nf the greedy algorithm. Let N = {j Ex-5:
i : . . .
ST ui{jl € X and Dj(Cﬁ) > 0}. The greedy curvature of 2 is

] a, = max max J

l<izK-1 jeR1

0.(9) - pj(si)}

oj(¢)

Note that the greedy curvature . of Z is defined with respect to X and

that ac<.a, the total curvature of 2.

)
L}
I
K
lew
L]
ey
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Proof : By Lemma 2.2, Oy (SD]) < Py i=1,...,Kk. By the definition of
i

as pw'(Srl) = _GG)pw.(Q) for i =2,...,K. So the optiral value 2z*
i i
satisfies
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* K 1 K
2 < T ¢ (<o, + 75 I 0.
=1 Y S L T
26 p) . * . s qe
Theiefore —5 > 1 -a, + a, —. Since Z <Kp , the validity of the
A G G Z 1

bound (3.1) is proved,

The fact that the bound can be achieved is shown by the following exam-
ple. The ratroid has K+ 1 elements and only cne set is infeasible, namely

the full set. The set function is defined by

is] if x €5
Z(s) =

g+ lsf -8 if x €5

It is easy to check that Z is nondecreazsing and subrodular for 0 <2 < %,

G

Z K-1 . .
: 2. = a ! — =1 - —— .m
that e 8 and that 2 1 % R if the greedy algorithm chooses
x, in the first iteration.
a
viezp - oo K-1 . .
~oiiEE .2, The beund I - A ¢ can easily be cemputed in the course

of the algerithm. It gives an a pesteriori bound on the quality of the
precdy solution which can be tighter than the a priori bound 1/(1 +n).
In fact it proves the optimality of the greedy algorithm when a, = o,
vhich occurs when Z is additive but may also occur for rore general set

functions.

COROLLARY 3.3. If X is a matroid, Z a submodular set function and the greedy

algorithm is such that pj (Si) = gjﬁa) for i = 1,..., K-1 and all j € Ni, then

the greedy solution is optimum,




F04%K 3.4, Theorem 3.1 recains true if a. is replaced by the parameter

c.(p) - p.(Sk_l)
Q('; = ,Jma x I TSR B 1
jen-s¥=1:p (0)>0 o.(®

J ]
p.(®) - o.(N - {3 £
or a" = J 3 3
] G jsN— {j‘} Qj () i

1

Note that the parareters Cxé and O.G do not dominate each other. So the

two versions of Theorem 3.1 are interesting. It is also worth noting that

. Djl(¢) - Ojl(N -{Jl})

n, , ——
G pjx(¢)

a = max

However, the worst-case exanple of Theorem 3.1 works for a,. but not for a.

G

4. A BOUND IN TERMS OF THE RANK AND THE GIRTH OF THE MATROID

0 1 K i
Let " =@, s »s+++,5 be the sequence of sets chosen by the greedy algorithm, l

and define LY = Z(Sj) - Z(SJ'I). Note that the greedy solution has the value

G
Z" = °1+ §2+...+ ok*

It has been shown in [11] that Z is submodular and nondecreasing if and only

if Z(Q) s Z (S) + z -]

j(S) for all 5, S = N. let  be an optimal solution.
jen-s

t ‘ t - 4
2t =2(Q) €2(5 ) + Etpj(S), 0<1t<K. (4. 1)
jeqrs
. t t : .t t
forrall t<h and j€ -8, S U{j} € X and tlierefore pj(S ) <0-

Since l(j, - Stl < K, we cbtain that 2% st ‘satisfy the follcwing relaticn-

Ship:

+Kp 4o ¢ =0,...,h-1, (4.2)




N

For indepcndence systems, it turns out that these constraints are the only
essential ones in the analysis of the greedy heuristic, see [5]. For a
ratroid, howvever, the optimal solution must satisfy another family of in-

cqualities.

PROPOSITION &4.1. The elewents of any basis of a matroid can be cirdered

{01“’2"""“1(} so that, for any h<t €K,

o (sH < o, if p<iSt
wi J

Prel if i>t.

T'roof. Consider the order defined in the proof of Lemma 2.2. Since
i1~ c . t . c
Si lu \'mi} is independent, so 1s S U {"'i} for every t <1, Therefore,

. t
by the cheice rade in the greedy algorithm Pu (S ) < Ces for 12> t.
) i

For hp <i €¢, O (Si‘l) < ey Yy Lemma 2.2; this implies
t . iil t

o] (S){pi since S cSsS .

w3

Finally, for i< h, p (Sh-l) < o, cince Sh-l v {wi} s inceépencent.
o
i
Therefore Co (St) < o, 2s a consequ=nce of the lypothesis h << t,

L 0

Frcyposition 4.1 allows us to write the inegnality

<

t »
jcnustpj () <hpgy +pp, *---*p. + (K-t

h<t <K- 4.
t+l® t K-1 (4.3)

Co~bining the incgyualities 4.1 and 4.3 we get

¥
A N fhoy * (h+l)ph+ 2°h+l+"'+20t*(x-t)ot+l (4.4)

for h<t <K-1. We have just proved :




THIEOREM 4,2, e folloving Orogqalities are all valid :

t .

* <t <h- ‘.

YANES .X p; Ko ., 0<t<h-1 4.5)
i=1

, ) t

b4 <.2 pi+(h+l)ph+.2 2pi+(K—t)pt+] h<e <K -1 (4.6)
i=1 . i<h+]

0<pt-pt+l 0 t<K-1 (4.7)

The inequality 4.6 for t = K-1 is always dominated by the one correspond-

ing to t = K-2 and will be removed from the system.

Now we use the bounding technique presented in the introduction. Thus,

any W >0 which is a solution of the following system yields a bound

R-1
E:_] ni for the performance of the greedy algorithm. . |
K
X
. | 0
L - K .
. . 1 K hth row
1 1...1 h+1 K-h
] 1...1 h+ ] 2 ¥-h-1]
2 4
T <e
[ . . . . . -
. . . . 3 »
. st L
| 1...] h+ ] 2 2 ... 2 2 0 (K=-1)"" row _,
1 -1 '
1 " 0
0 1 -1
] ’l -




o ot

We deccwpese T into two vectors @ = (u,v), where u = (ui ti=1,...,F-1)

is associated with the first (K-1) rows of the zbove rstrix and

v = (v.1 i =1, .., K-1) is zssociated with the rcmaining rowvs.
K-1
Ku + I u. +v <) (4.8)
1 . 1 1
1=2
K-1 .

: < . < 1< t<h - .9

}\ut'r ) u.1+vt vt_]\l ) t 1 ( )
i=t+]
K-1 .

. - : . .1
l\u.h+ ] z (h+])ui+vh vh_l<l | (4.10)
: 1=h+] .

K-1
(K-t+u,_ + T 2u, +v_-v <1, h+lgtgK-1 (4.11)
t i=t+] t t~1

To compute an analytic solution of this system, we consider two separate
cases : K2 2h and K< 2h,

_1
k-1 2° i
for 1<i<h-1 and v, =0 for h<j <K-1, we get a hound of value

When K 2 2h, setting ui=0 for 1 €i<K-2, u

[SID

}
7.
Whten K < 2h, we set Ui.:O for 2h-K+1<i<K-2 &nd v, =0
for 1 <i<2h-K and B <i<K-1. (Note tha‘t, in the cases R =K or
K -1, the whole vector v is set cqgual to 0 wlercas no u, is. 1In thise two

cases the recmazining system is trisngnlar.,) Ulen B < K-2, the roraining

system is

: <t < - K
kut+ut+l+...+u2h_K+uK_l<l ] t<2h-KX
- - -K h-
Uy Ll | Ve ve 2h -+l €t £ ]
(4.12.1)
(h+l)u}(_l<l+vh_] t =h
h <K -
Zu}:_l<l +]1 € t <RK-1




We consider the solution

. \2h-K-i
o = B (_*:j,l) l<i<2h-x
1 KZ K

: >~ h
W, = L'R" (vhen R € K-2)

and v; = h_(_K;i_h:})_ 2h-KR<i<h-1.

We now prove that this solution is fezsible. When h<K-2, the in-
equalities (4.12.t) are verified for t > h+1 2s a conseguence of the
arsv-ption K< 2h, For 2h-K+ 1 €t < h, t.e iniqualities are satiefied

with ¢quality, i.e. vhen t =h

' h+1)(K-h) h(K-h-1)
h = G+ D&K-b) _ L h D o
(h+D)w ¥ 1 4+ z 1+ v
and when 2h-K+ 1€ th-1
- K-h _ 1 - h_ ] - -
Y1 " T K ~ Ve-r T Vet

The values wu., 1< i €£2h~K, are obtained by solving at equality the tri-

angular system (4.12.t), 1<t <2h-K:

).

Ku +u +
t

h
t-1 .. + 0 =E(:l-

2h -x Yk-

(The cuses B =K or K- 1 are also obtained by solving the correspunding

triangular systems at equality.)

Since (4.8) holds with equality, tle value of the bound is :

K-1 2h-K

h /¥ -
Zu.=l-v—(K-l)u=l—~(} 1) .
{a] I 1 1

K K




Note that the lLest hound which can be cbtsined from the sysrex (4.8) -

(4.11) is the optiral value of the linear program

subject to & .8) - (4.11)

and u>0, v>0,

we claim that the sclution derived in this section is indeed an coptiral
solution of (4.13). To check it, it suffices to exhibit a fcasible sclution

of the dual linear program with the same objective value :
K
rin T p, ‘ (4.14)

subject to (+.5) - (4.7) with 2* set equal to 1

and p > 0.

We propose the following solutions :

“ . 1 .
Wvien K 22h, take pi=55 for 1 <€i<h and oi=0 for h+l <3 <k,
ten K < 2h, take

, _ qyi-]
p; = -(-k——f!l for 1 €£ig2h-K
K .
= (—'5—'-'-)2—1( for 2h i 4
Di— th-x+l‘— or ‘K+l<l<h (.15)
p. = 0 for h+1 €i €K,
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The interested reader can verify for himself the feasibility of these

. K
solutions. The fact that 2i=l p; = % when K > 2h is obvious. When

K < 2h, Ei- p; = ] - (_*k-) (gecmetric series) and
K = K-h(K-1 X Theref
1=2h-Re] p; = % 5 . erefore .
2h-
X N LR A K
S B A U (4.16) -

Now we show that the bounds

G : .
z 1

= > 3 K22h
z

G 2h K
z -

>1_2(_’\ _’) K < 2h

2* .S K

obtained above are tight; that is, we exhibit families of matroids and sub-

modular nondecreasing set functions for which the greedy performance satisfies

the above bounds with equality. We define a matroid on the set of elements de-
noted by B{) A1} T, where |B| = h, |A] = h |T| = K - h. The elements in B will

be the first elements chosen by the greedy algorithm, the elements in A_will belong
only to the optimal solution and the elements in T will be common to the greedy

and the optimal solution Let's define an independence system in the following
way., The independent sets are all the sets of size at most K not containing

more than h elements in the set B| ! A, The sets of h elements in B! | A are

called critical sets.

PROPOSITION 4.3 The indepevdence sysicm is a matroid.
Proof. 71t is the direct sum of two unifcrm ratroids, [12]. It is also easy
to check the ratroid axioms (1.2) and (1.3), '

0




i 3 \ 1
e now examine the case K >2h and define a nondecreasing subtmodular

]
cet function Z which gives the worst case of 7 The subsets of A of.a
given cardinality will be indistinguishable, as far as the value of Z 1is
concerned. Sowe will denote by Al any subset of cardinality j. Sirilarly
the subsets of BU T of a given cardirality will be indistinguisnable, so

we will denote wrc BUT any subset of cardinality i.

Z($) =0
i j i+ i .
2z v al) = 3T i <h
Aoy = 52l i>h.
Z(W" v AaT) = 3 + -Z.h
FPROPOSITION 4,4 The funcifon L Zg sulucdular cnd ninfecreeTng.

The proof is very easy. It is left to the reader

The set B can be chosen first by the greedy algorithm beczuse the
increzent given by any element x € B is not sraller than the increment
given by any cother element, when the set of elerments has cardinality less
than or e#qual to h (ties are brohen arbitrarily). At stage h, the cnly
elenents which give a pesitive increment are the elcerents @ € A, but they

ferm circuits with the set B, Yccause it is a critical set; tharefore :

zG

ZBuT) =

N o~

Since [T} =K-Rh>h, Z(TUA) = 5 +

For the case K < 2h, wve use the matroid defined earlier. However, wve
reed to partition the set B in tvo eulsets, cne will still be dructed by B,

the other by Y. Narely, let B be the se¢t of the first 2h -K ¢l.o.nts

in the griedy solution, Y the set of the next K- h elc-ents in the greecdy
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solution, T the set of K-h elements ccmmon to the greedy znd the optimal

set, and A the set of h elements only in the optimal solution. We denote
i .

by B" C B, w? CYuT and Am_C_ A subsets of cardinality i, j and m,

respectively. We consider the following function :

. . i+4r
i j Dy, _ g ..
ZB uw ua) = t:] P, * (q+m)o.l+r+l i+j <hn
i j m &K
zB'uwl uA™ = T p + (K-h+mp. . i+j>n
t=l t 2h '}\"]
vhere q = min (j, K-h]
r = max {0, j-(K-h)]
and o, 1<t<K, is given in (4.15). ‘

Note that the {unction is doubly defined vhen i+ j = h, Tt is casv to
verify that the two expressions are then identical since j 2 K-h (a con-
sequence of the fact that i <2h -K). For the proof of our next theorem,

we will find i1t useful to have both expressions availzble.

THEOREM 4.5, The function Z defired abeve 1s sulrodular and nornleorézsing.

The proof is straightforward, though scmewhat long. Anyone interested can

find the proof in the zppendix.

frain, the set B can be chosen first by CGreedyv, heczuse vien 1 < h
B:l CB &and L €B - Bi, we have pg(Bi) = pi”, which is egunal to the
increrent given by elements in YU T or in A. then all the elcrents in B
Yave been added to the greedy solution, we have i = 2h -K e&nd the elirents
in Y gi've increrments th_K” because r is equal to zero. After that,
e¢icrents in A give a positive increment, but BU Y 1is a critical set and
the addition of 2n element in A would create a circuit. Therefere, only

elerents in T can be added, but since i+j =h, they give null increrents.

Therefore, we obtain : .

6
e L " L N




If we consider the solution T U A, the elerents in T give increrents of o,

zs well as the e¢lirent in A. Therefore,

* (K -h) h
2t - A Th) .t
h’ K l.

5. A TIGHT BOUND FOR INDEPENDENCE SYSTEMS

In this section we consider instances of problem (l1.1) where X is an
independence system. As earlier we assume that Z is a nondecreasing sub-
modular set function with Z (¢) = 0. Let S0 = ¢ and st = fjl,...,jt}.
t=1,..., 4, be the successive sets chosen by the greedy algorithm. Note
that k € 4 < K, where K and k are respectively the maximum and minimum
cardinality of a maximal set in X (K and k are sometimes called respect-
ively the upper and lower ramks of X.) Recall that o = nji(si-l) and
that 4 denotes the total curvature of Z, (In this section g could be
replaced by oq defined as in Section 2 with () being an optimal solution and

and S being the set Sk.)

5.1 For uny inderendent set Q@ und t = 0,...,k -1,

Z(Q) € a ) p. + z p. + (K-s)p
i:j,.58-0 ' irjefast e+l

ere s = g0 st

-

. t R .
Froof : Follows from Lemma 2.1 and the observation that S U {«} is in-

dependent as a conscquence of the assu-ption t < k-1,

Y s LAt L]




We will only use Lemma 5.1 when @) is an optimal solutioa.

Consider the family FK k.o of all irnstances of problem (1.1) wvhere X
H ?

ard Z have the given parameters K, k and a as defined above. For sim-

plicity of notation we write F = FK k.o FOT 0 <s <k, let

1 < i] <...< is < k be a sequence of integers and let F(ix""’is) cF
. . L . .
be the farily of problems such that a greedy solution §° = {J‘,...,JQ} has
i
the elerents ji seses ji in commen with an optimal solution Q. XNote
1 s
that when s =0 the set of common elezents is empty.

Let ZG and z* be the values of a greedy and optimal solution respect-

ively. As a consequence of Lemma 5,1, for any problem in F(ix""’is)’

2°> 83 ,...,i) 2% vhere

k
.1 B(i ,...,1 ) = Min X p., subject to p.>0,1=1,...,k
1 s 121 i i
and
1 i, 1s k
rl“ F‘K. 7 FOI_
1 Q '. 0,
. K
. fod K
. a 1 K-1 0
a 1 a
< - L] . *
K-s+1
1 K-s
a
[ 1] | a *°* a 1 a **°* a 1 a °*°° Q K—s_er_j
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5.5 Bli ..., )) 2B(O) Ly sy Dileger segence 1< i< ... <i_<k.

Proof : &fssume s >» 1 and consider ir for 1 €r <s. For «implicity of

. Hd

notation we denote g = ir' First we show that oq < qu+l in scre optiral
solution of the linear program (5.1) associated with B(i ,...,i ). Assume
not, i.e., assure that oq >oq+1. The inequalities q and g+1 of tle system

are

+ ...07Q + (K-r+Do_ =21
o oq_1 ( )q

{ - =2 1.
Qo+ vap Pyt (K r)Dq+1

Note that the first of these two constraints is not tight. Decrease the value

of pq by ¢ >0 small encugh so that the inequality rerains fcasible, and

s £ . .
zd4d K=y to ps for q+1 <i<k. It is clear that this new solution is

feasible. The objective value of the linear program is modified by
€ .
(k -q) ¥-r "~ € <0 since k<K and q>r. Therefore Oq <p ‘ in some
q
optiral solution of (3.1).

Xew assume q = ir < ir+l - 1. Denote by A the constraint ratrix of

the lincar program (5.1) associated with B(il""’ir—l’ir’ir-i»]""’is)

and by A' the constraint matrix associated with B(il”"’ir—l'ir+ "ir+1’
.,is). A and A' only differ by their columns q and q+ 1. Thus any
vector p which satisfies 1 €< Ap and Dq < oq‘rl 21so satisfies 1 <aA'c.

This implies

B(i!,...,i .,is) = B(il,...,ir--l,ir +1, ir+1""’is)

i,i .-
ISl St £ e
Repeating iteratively this argurent for all 1 <r <€s such that

- 1, we obtain

i i
r< r+]

B(ix"”’is) Z2B(k-s+1, k=s +2,...,Kk).

fear ary




New let As be the constraint matrix acsociated with B(k-s+1, k-s+ 2

LK. rec ‘hi satisfi < o ar o < r < ...
LK) Anv vector p vwhich satisfies | As., nd vose] S F‘,;—st .
< ok also satisfies 1 < As+l 0. This shows

B(k-s+1, k=s+2,...,k) >B(k-s+2,...,k) > ... > 3(k) = B(¢).

k
sIemer ']— - S |
;f."_‘l____.s‘s' B(g) = a [l ( K ) ] |

Proof : Consider the lincar program (5.1) associated with E(g). ‘witiply :
1 (K—o\k‘t

the tth constraint by R\ K and add all the constraints,
o - k-
Eor-a)T _ X o rx-a)Fd Kooy k-a\Ft
~ K —E—' < I . K + 2 g K / .
t=1 i=1 * t=i+1

Summing the geonetric series we observe that the coefficients of p; equal I

for every 1 =1,..,.,k and that the left-hand side of the inequality equals

» _ \k
1 [] - (I\Ko.> ] as required.

O

RS ARl - J . gl e ad ay camd e e . 5 a- 1 r e
TEFCREM 5.4, If X ds an indepeidemce system UUih urper rank K, Touer

rank k, and ©f Z “s a nemdevrecsing sulmcdular ser Junstlon with 2(g) =0

and 1otal curoature a, tren

Proof : The bound is valid as a consequence of lcr~as 5.2 and 5.3 and the
fact that F=U{F(i1""’is) : i<i1<...<is<k is a (,pessibly
empty) integer sequence}. The fact that the tound is tight is chown by the

follewing worst-case cvxamples.,

pa e .- ek PTAANG L DRAL Pkt T o e bs M-
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let N = {5x’jz"‘"jx-l'“’x""""K} and let X be the femily of all

[ S

the subsets S C N which contain at rost k elerents if j €S and at most

c i s s 1 (K -a)i™! p : = X
K if Jles, vhere k < K. Define o, = ¢ { "™ or i =1,...,K,

and censider the set function defined on the subsets of N as

K -ua t u
. - h )
Z(3: 93: seeend: » W, JWw_ ) = B R o * -
L, e T ru h=1 Jn
In this formula we allow t or u to tzke the value 0. The si—Tation is

tsten to te 0 1f t =0. herefore Z(¢) = 0. ote that

. . u
Oj.(Ji ""’Ji’wr""’wr)-(l-aﬁ)°i>(]-a)pi
1 1 ct i u
oy (35 seeesdy vt sees ) =g - 2 > o, > (-0a) .
r 1 t 1 u h=1 Jh
This shows that the set function Z is submodular, nondecreasing and has ‘ ,

total curvature a.

The optimal solution 6f problem (1.1) is {wl,...,mx} with value 1.

Since p, = -l!(" the greedy algorithm can choose jl in the first iteration.
. . . i-1
] . i-1 . . 1-1 1 [K-a
Assume 1t has chosen S = {Jl,...,Ji“l}. Then oj_(S ) = ey —R-< X ) |
. i-1 1 i-1 :
i-1, 1 _al 11 K-a)i-l 1 (K—Q)l
‘he S ==--= I = === - |- = s\ .
whereas °mr( )=R K oy T RTE [1 ( K ) ] KX
So the greedy algorithm can choose the element ji in the ith iteration. i
k k |
The greedy solution has the value X p, = 1 [l - (K ’a) ] as required. l
h=1 h a K

. _ 1\K
croapr s.s. 191 2% [1- (S52) e

Proof : Set a =1 1in the bound of Theorem5 .4.
O

€. [6),07]. If X 7s an inderenicuce cpoton and 2 <s ciiitive,




A vt T <4 e a e s
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Proof : lLet o - 0 1in the bound of Theorem 5.4. The fact that

k
(1 -8) L1 =% g
K g irplies the result.

s Ar T - . . .
CCROLLARY 5.7, IF X is a wntifcen mairoid and 2 ras tetal curvature a

’ K
1 G 1 _(K-a *
them 2 >a[l ( K) ]Z.

Cu=Qi LARY 5.8. (23,01}, If X is a wnifcrm riztroid, then

AR 5.8
zG,>,[1-(-——K ') ]z*.
K

Proof : Set a =1 in Corollary 5.7.

COEOLLARY 5.9. If X Zs @ uniform matreid and Z fne total curtuture a

.a
then 28 > 1-e o 2(1 - 2) z*.
a 2

_~\K
KKQ) < e-a. Therefore the bound follows
‘ -

from Corollary 5.7. Furthermore 1—:—(13-—— >1 -% for all 0<a <.

Proof : For any integer K, (

6. THE BOLND 1/ (p+a)

The last result that we shall prove ccncerning problem (1.1) is the
following. Llet X be an independence system, p the minimum nurber of
matroids that one needs to intersect in order to obtain X and 2 a non-

decreasing submodular set function with 2(£) = 0 and total curvature Q.
1 7*

Then the greedy algorithm finds a solution with value 263> STk

where 2* is the optimal value.

a

>

=
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However we derive the bound

P+ a for a rore peneral model than (1.1),

as an exanple of a possible extension of the results in this paper.

Given a nonnegative vector u = (u, : j € N), let |ul = T wu_,
N J J€N J
Given two vectors u,v € R we define w =uvv as the vector of R with i

comnponents wj = max (uj, vj) for all j € N. An Zntegral poliaatrceid is

o ram

a pair (N,P) where N is a nonempty finite set and P CR,_ is a finite

family of integral vectors such that

(1) vEP, us<v and u is an integral vector = u € P, and

(ii) u, v € P and |u|+l=|v|=03w€P such that u <w <uwvv.

The vectors in P are called independent vectore., The concept of
integral polymatroid was introduced by Edmonds [4] as a generalization of
matroids (obtained when P contains only 0,1 vectors. Then the indepen-
dent sets of the matroid are precicely the subsets of N vhese 0,1 inci-
dence vectors belong to P.) An introduction to integral polymatroids can

be found in [12]. A known property is that P can be written as
(6.1) P={x>0 and integral : I x, <r(S), VS C N}
JES
where r is a nondecreasing integral sutmodular set function with r(¢)=0.

N
-

A vector Function Z =R R, is submodular and nendecreasing if

(6.2) p;(v) > p,(w) >0 forall i €N and ve<uE RN,

where pi(v) = Z(v+ei) - 2(v) and e, is the unit vector whose ccmponent

indexed by i € N is equal to 1.

Given a nondecreasing submodular vector function 2, a generalization

of problem (1.1) is

o  — — - ——————— - - -




et =

«29.

(6.3) max {2(v) : v € X}

where X is the intersection of p integral polyratroids. Note that, as a

conscequence of (6.1), the problem (6.3) can be written as

(6.4) max Z(X)
Ax < b ]

x 2 0 and integral,

vhere A is a 0,! matrix. Conversely, for any 0,1 matrix A, the problem
(6.4) is equivalent to (6.3) where X is the intersection of a nurber of
integral polymatroids. For example X =fi‘ Pi where P. = {x >0 and

integral : a; x < bi}’ a; is the ith

of b.

row of A and bi is the ith corponent

A steepest ascent (or greedy) algorithm for solving problem (6.3) or
(6.4) would be

nitici<zation : Set v® =0 and t =1,

b~y

— - ————

1

t‘l) = max {oj T h

Step_t ¢ Find j, € N such that Dj (v
t

L N e; € X}. 1If no such j, exists, stop.

. -1 .
Otherwise set vt =v° + e, , increment t by 1
t

and repeat Step t.

In this section we assume Z(0) = 0. If we define p j (vt—‘),
t
the value of the greedy solution vk is Zc =P, t et D, where k is

the value of the parameter t when the greedy algorithm stops. In fact,

¢t = °

k = r(N) as defined in (6.1). Note that the greedy algorithm defined

above is not polynomial in |N|. !

let m = (mi : i €N) where m, is the largest integer A such that

the vector )\ei € X. Define the total curvature of Z with respect to X

as
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a4 = max J
jen® p;(0)

.(0) ~ p.(m-e.
{D (0) DJ(m eJ)}
where N* ={j € N : oj(O) > 0}.

TEECREM 6.1. Let X be the interscction of p integral peol.mutroids P,
i=1,...,p and Z a nordecreasing sulricdular vector focticn with Z(0)= 0

and total curvature a. Then a greedy sclution to prcblem (6.3) las a value

1 . .
2° > o +a 2% ulere 2* is the optimal value.
: ol ¢y
Proof : Consider an optimal solution w. We will write w= ¥ e where
. £=1
the e(z)'s are unit vectors, i.e. e(g') = for some 1i(f) € N. \Note

=e.
i(9)
that the same unit vector e, may appear several times in the summation,

indexed by different values of £.

t . . . .
Let s be the vector obtained at iteration t of the greedy algorithm,

t=1,...,k. If |w] >t, then we claim that, for all i,

(6.5) st o+ e(l) € P. for at least lw] -t of the vectors e(Q) .

This is proved by repeated use of axiom (ii) of the definition of inte-
gral polymatroids : consider w' <w such that J|w'| =t +1, By (ii),
3 e(n) such that st <st + e(z) <m' v st. Now replace w by w - e(f')
and repeat the argument. Since it can be repeated |w| -t times, the proof
of the claim (6.5) is complete. A consequence of property (6.5) is that

p ,
(6.6) if |w|>pt, then st+e(2)€ N Pi for at least |w} - pt of the vectors e(").

i=1

For any such &, pi(ﬁ) (st) < P.41? 23S @ consequence of the choice made

by the greedy algorithm.. So the e(z)'s can be ordered so that




e

<31-

¢ = 1.
(6.7) °i(n)(s)<°c+l for pt <& < p(t+l) and t =0,...,k

Note that k >Ln—|- as a consequence of (6.6).
P

. . k
Let m/\sk be the vector whose jth component is pin (w., sj) and let

k [}
Lc {1,...,]w|} be a set of indices such that waAs = p> e( )

= . Then
) L€l
k k k k w
Z(w) + (1~a) Z P SZlwvs)+ z p.u)(s )< 2Z(s )+ Z o, (sk).
t=1 geL ! g=1 (D)
As a ccnsequence of (93.7)
k k
Zw) + (1-a) Z p < (+p) T p .
t
t=1 t=1

Therefore 2% < (p +a) 2 as required.
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APPLIDIX : proof of Theorem 4.5

r—— - ———

PROFOSITION

Ao - B-Dp,

Let p_, 1 <n <K, be given in (4.15)..
1< n<2h -K, 73 equal to '

k-2,
K Pn
Proof.
n n-]
_ _ AK=-1)" - (A-DKE-1)
Aoy - O Wyp = NI DA IR
K
_ AK-1) -K(A-1 _ K-
-7 K~ 7 fn T K Pn
We are now ready for the proof of the theorem : We prove
QE(S) > pl(R) =0, for each SCRCE, for cach { €
Case 1: £ €B
1.a) i+j<h, j<K-bh (note that r =0, q =3j)
i 'j B, . _ . )
Ok(n v W U A ) - °i+l + (J *m)0i+2 (J *m)pi"']

pp = Grmp, - Gam-De, .

From the sbove proposition, by substituting j+m for X, we get

The difference

F




;[
|

Since j<K-h, m<h, j+m <K, wve have Py > 0. Moreover, by lowering

j or m or i, cannot decrease.

Py

1.b) i+j<h, j>K-h (note that q =K-h, r = j+(K-h) =0)
i j my . . e
pl(B UW UA) = Pivpe] ¥ (K-h+ m)°i+r+2 (K -h +m)pi+r+l

(K-h + m)pi (K-h -1 4+m)p.

+r+2 i+r+l”

Again, from the preceding proposition, by setting A = (K -h +m), we

get :

— h_m
P = K Pi+r+l”

Since Psirel =20 and m<h, we get‘p2>0. Moreover, if 1 or r or m

decreases, Py increases and
h~-m K~-(j+m) . . _
X Pi+r+l < % P41 vhen j < K-h,.
l.¢) i+j=2h

02(31 uwlua™ =0

Carne 2 : £ € A
2.a) i+j<h

Bl ywl ua® =
pl( UK LAY pi+r+]

2.b) i+j>h

92(31 uwl ua®

= Poh-gs+1°




Pivrel is greater than or equal to Poh_ys) DoC2use vhen r =0, i < 2h-x;
vien ¥ >0, r =3 - (K-1), but i+r =i+j - (K-h) <h- (K-h) =2h-x,

Case 3: 2evYUT

3.a) i+j<h, j<K-h

(note that r =0, q = j)

Bi j m = . - . _
p, (B LWl uaT) (J+1*rn)oi” (J"m)Oi” = Pi,-

3.b) 1i+j<h j2K-h (note that q=K-h, r>0)

i j o, _ . ,
02(5 Uk uaA) =Piirer (l\-h+m)p.l - (K-h+m)p,

+r+2 1+r+]

:(]v(.—-h-tm)pi - (K-h-]+m)o_

+r+2 i+r+]°
X
}
}
|
Again, by applying the proposition, we get ‘
|
h-pn :
Pe = "X Pisrsl ;
si Bomgt and < h diti b-n is
ince K~< an pi+r+l pi” the condition pi+l = T pi-»r+l
always satisfied.

3.¢) i+j=2h

°n(31 uw ua™ =o0.

Therefore, the function is submodular and

nondecrezsing.
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2 = 0 if and only if the set function Z is additive. Thus the theorems of Rado-
Edmonds theorem is given in terms of a ''greedy curvature" of the set functionm.

Unlike the first bound, this bound can prove the optimality of the greedy algorithm
even in instances where Z is not additive. A third bound, in terms of the rand and
the girth of X, unifies and generalizes the bounds (e-1)/e known for uniform matroids
and 1/2 for general matroids. We also analyze the performance of the greedy algorithm
when X is an independence system instead of a matroid. Then we derive two bounds, both
tight:

The first ome is {1 - (1 - a/K)k]/a where K and k are the sizes of the largest and
smallest maximal independent sets of X respectively; the second one is 1/(p + a)

where p is the minimum number of matroids that must be intersected to obtain X.







